II B.Tech - I Semester - Regular/Supplementary Examinations DECEMBER 2023

DATA STRUCTURES

(Common for CSE, IT)

Duration: 3 hours

Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

			BL	CO	Max. Marks
UNIT-I					
1	a)	Show the outcome of different passes for sorting the following sequence of data using Quicksort algorithm. $8,11,3,15,6,9,12,39$ Assume the first element of the list as pivot.	L3	CO 2	7 M
	b)	Compare Big-oh (O), Big-Omega (Ω) and Theta (Θ) notations and illustrate with an example.	L2	CO1	7 M
OR					
2	a)	Write a recursive algorithm to compute $\mathrm{n}^{\text {th }}$ Fibonacci number for a given n . Write recurrence relation for this algorithm and also compute running time of the same.	L2	CO1	7 M

	b)	Find Big-oh (O) representation of given function $f(n)=n^{3} 2^{n}+6 n^{2} 3^{n}$. Justify your answer.	L2	CO1	7 M
UNIT-II					
3	a)	Write an algorithm or pseudo code to count the total number of nodes in a Singly Linked List.	L3	CO 4	7 M
	b)	Write an algorithm to insert and delete an element in a Circular Doubly linked list representation at a position ' X ' from the head node.	L4	CO 4	7 M
OR					
4	a)	Write algorithms to perform the following operations on a doubly linked list. i) Insert a node with data ' y ' after a node whose data is ' x '. ii) Delete a node whose data is ' s '.	L3	CO 3	7 M
	b)	Consider two singly linked lists L1 and L2 of sizes m and n respectively. Let X and Y are two nodes in the list L1. Write an algorithm to remove the nodes X and Y from the List L1 and insert the node X before the first node in L2 and insert Y node after the last node in L2.	L3	CO 4	7 M

UNIT-III					
5	a)	Illustrate the step by step procedure to convert the given Infix expression into Postfix expression Infix Expression: $\left((\mathrm{A}-(\mathrm{B}+\mathrm{C}))^{*} \mathrm{D}\right) \$(\mathrm{E}+\mathrm{F})$ Here $\$$ is used to represent exponential operator.	L2	CO 3	7 M
	b)	Compare and contrast Queue with circular Queue. Illustrate the operations, advantages \& disadvantages of Queue and Circular queue with example.	L2	CO 3	7 M
OR					
6	a)	Write a procedure to implement queue using stacks i.e., implement insert and delete operation of queue using push and pop operations.	L4	CO 4	7 M
	b)	Write a procedure for PUSH and POP operations of stack using singly linked list data structure.	L2	CO3	7 M
UNIT-IV					
7	a)	Write an algorithm to identify the deepest node of a given binary tree.	L3	CO3	7 M
	b)	Compare and contrast tree, binary tree and binary search tree with an example.	L3	CO 3	7 M
OR					
8	a)	Write the algorithms for in-order, pre-order and post-order traversal of a binary tree. And also illustrate the same with an example	L3	CO 3	7 M

	b)	Write a short note on binary tree? Construct a binary tree for a given the pre-order traversal and inorder traversals as follows: Pre-Order Traversal: G B Q A C K F P D E R H	L3	CO3	7 M
In-Order Traversal:					
Q B K C F A G P E D H R					

