II B.Tech - I Semester – Regular/Supplementary Examinations DECEMBER 2023

DATA STRUCTURES

(Common for CSE, IT)

Duration: 3 hours

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Max. Marks: 70

			BL	СО	Max.		
					Marks		
		UNIT-I					
1	a)	Show the outcome of different passes for	L3	CO2	7 M		
		sorting the following sequence of data using					
		Quicksort algorithm.					
		8, 11, 3, 15, 6, 9, 12, 39					
		Assume the first element of the list as pivot.					
	b)	Compare Big-oh (O), Big-Omega (Ω) and	L2	CO1	7 M		
		Theta (Θ) notations and illustrate with an					
		example.					
	OR						
2	a)	Write a recursive algorithm to compute n th	L2	CO1	7 M		
		Fibonacci number for a given n. Write					
		recurrence relation for this algorithm and					
		also compute running time of the same.					

		function $f(n) = n^3 2^n + 6n^2 3^n$. Justify your			
		answer.			
		UNIT-II			
3	a)	Write an algorithm or pseudo code to count	L3	CO4	7 M
		the total number of nodes in a Singly Linked			
		List.			
	b)	Write an algorithm to insert and delete an	L4	CO4	7 M
		element in a Circular Doubly linked list			
		representation at a position 'X' from the			
		head node.			
		OR			
4	a)	Write algorithms to perform the following	L3	CO3	7 M
		operations on a doubly linked list.			
		i) Insert a node with data 'y' after a node			
		whose data is 'x'.			
		ii) Delete a node whose data is 's'.			
	b)	Consider two singly linked lists L1 and L2	L3	CO4	7 M
		of sizes m and n respectively. Let X and Y			
		are two nodes in the list L1. Write an			
		algorithm to remove the nodes X and Y			
		from the List L1 and insert the node X			
		before the first node in L2 and insert Y node			
		after the last node in L2.			

		UNIT-III			
5	a)	Illustrate the step by step procedure to convert the given Infix expression into Postfix expression Infix Expression: ((A-(B+C))*D) \$ (E+F) Here \$ is used to represent exponential operator.	L2	CO3	7 M
	b)	Compare and contrast Queue with circular Queue. Illustrate the operations, advantages & disadvantages of Queue and Circular queue with example.	L2	CO3	7 M
		OR			
6	a)	Write a procedure to implement queue using stacks i.e., implement insert and delete operation of queue using push and pop operations.	L4	CO4	7 M
	b)	Write a procedure for PUSH and POP operations of stack using singly linked list data structure.	L2	CO3	7 M
		UNIT-IV			
7	a)	Write an algorithm to identify the deepest node of a given binary tree.	L3	CO3	7 M
	b)	Compare and contrast tree, binary tree and binary search tree with an example.	L3	CO3	7 M
		OR			
8	a)	Write the algorithms for in-order, pre-order and post-order traversal of a binary tree. And also illustrate the same with an example	L3	CO3	7 M

	b)	Write a short note on binary tree? Construct	L3	CO3	7 M
	0)	a binary tree for a given the pre-order	20	000	/ 1/1
		traversal and inorder traversals as follows:			
		Pre-Order Traversal:			
		G B Q A C K F P D E R H			
		In-Order Traversal:			
		QBKCFAGPEDHR			
				1 1	
		UNIT-V			
9	a)	Illustrate the Prim's algorithm with suitable	L2	CO3	7 M
		example.			
	b)	Write an algorithm to find whether there	L4	CO4	7 M
		exists a path of length "k" for a given two			
		nodes in a graph G. The length of the path			
		can be defined as the total number of edges			
		on the corresponding path.			
		OR			
10	a)	Outline the distinguishing features of Depth	L2	CO3	7 M
		First Search (DFS) and Breath First Search			
		(BFS) for a given Graph G. List the			
		applications where each of it is used.			
	b)	Illustrate the different approaches to	L2	CO3	7 M
		represent the graphs.			